305(b) Methodology

Presentation Prepared by Joe Hand, Donna Tterlikkis, and Tom Singleton

305(b) - purpose

Clean Water Act requires each state to conduct water quality surveys to determine if its waterways are:

- healthy
- sufficient quality to meet their designated uses

305(b) - report

- submitted every two years
- uses chemical data from STORET database, biology data from the Statewide Biological database, and fish consumption advisory data
- prepared by the Basin Planning and Management Section

305(b) Methodology- activities

12 steps to complete assessment

- 1. subdivide State into watersheds
- 2. identify waterbody type
- 3. identify waterbody classification and designated use
- 4. inventory chemical data STORET
- 5. inventory biological data Statewide Biologic Database
- 6. inventory fish consumption advisory data Mercury Project

305(b) Methodology - activities

12 steps to complete assessment (cont'd)

- 7. calculate Index WQI or TSI
- 8. identify exceedances of water quality standards
- 9. status determination
- 10. apply confidence filters
- 11. use determination status
- 12. other EPA reporting requirements -
 - screen for poor water quality values (causes)
 - nonpoint source survey (sources)
 - analyze trends

1. Subdivide state into watersheds

- 52 major river basins
- 4,934 watersheds

Watershed:

- a waterbody and feeder streams that flow to it
- analytic unit for assessing surface water quality
- named for the <u>major waterbody</u> located within it
- water quality stations located within a given watershed are used to assess that watershed

Winter Park Chain of Lakes Lake Jessup Howell Lake Howell Creek Lake Minnehahaha Höwell Lake Maitland Creek Lake Osceola Lake Mizell Foose polygon 000 14 miles long 40 square miles

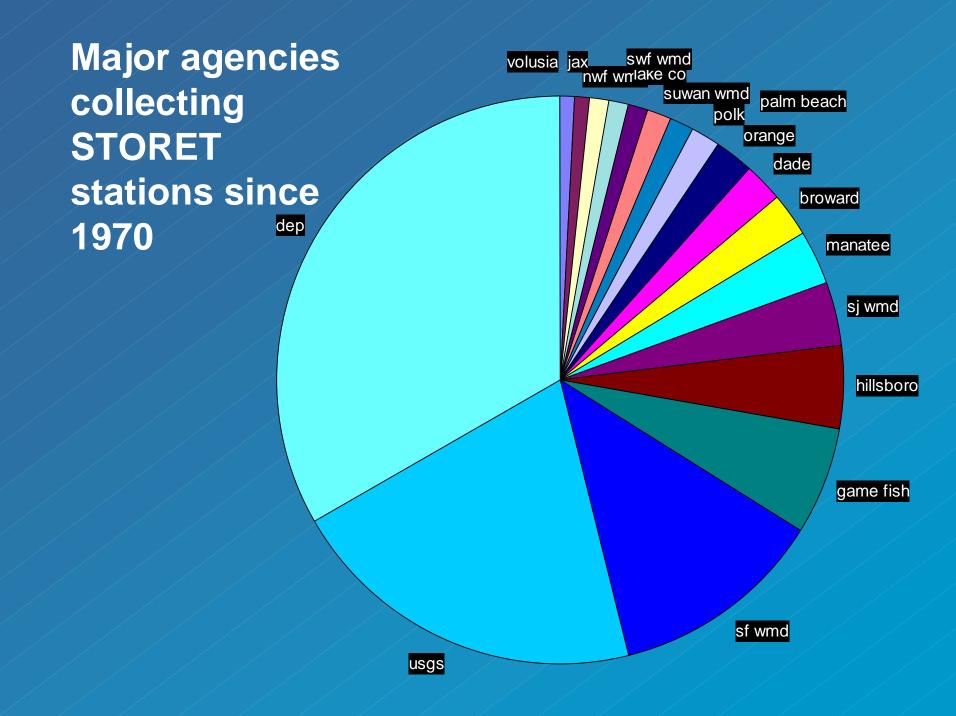
2. Identify waterbody type

- watershed identified by the predominant type of waterbody located within it
 - , i.e., stream, black water stream, lake, estuary or spring
- watershed determined by visual inspection of data or GIS mapping
- water quality assumed to be homogeneous in each waterbody

Waterbody type	Number of waterbodies	Characteristics	Assessment technique
Stream	3,359		Water Quality Index
Stream- black water	73	Color > 275 platinum color units, pH< 6	Water Quality Index
Lake	556		Trophic State Index
Spring	88	Low dissolved oxygen	Water Quality Index
Estuary	458	Conductivity > 5000 uhmos, chloride > 1500 ppm	Trophic State Index

3. Identify water body classifications and designated use for each waterbody

- functional classifications are applied to all Florida surface waters (Class I through V)
- standards and water quality criteria have been established for each class of waterbody under Chapter 62-302


Class	Function	Number of watersheds	Characteristics
I	Drinking Water	46	Usually lakes or reservoirs
II	Shellfish harvesting	124	Estuarine
III - Freshwater	Wildlife and recreation	3989	
III - Marine	Wildlife and recreation	374	Chlorides > 1500 ppm
IV	Agriculture	1	Everglades area
V	Industrial	0*	

^{*} Fenholloway River changed to Class III in 1997

305(b) Methodology - database development

4. Inventory chemical data STORET

- 9,200 STORET stations sampled since 1980
- in 1,900 of the 4,934 watersheds in Florida
- by 33 agencies
- current data defined as 1993-1997
- historic data defined as 1980 1992

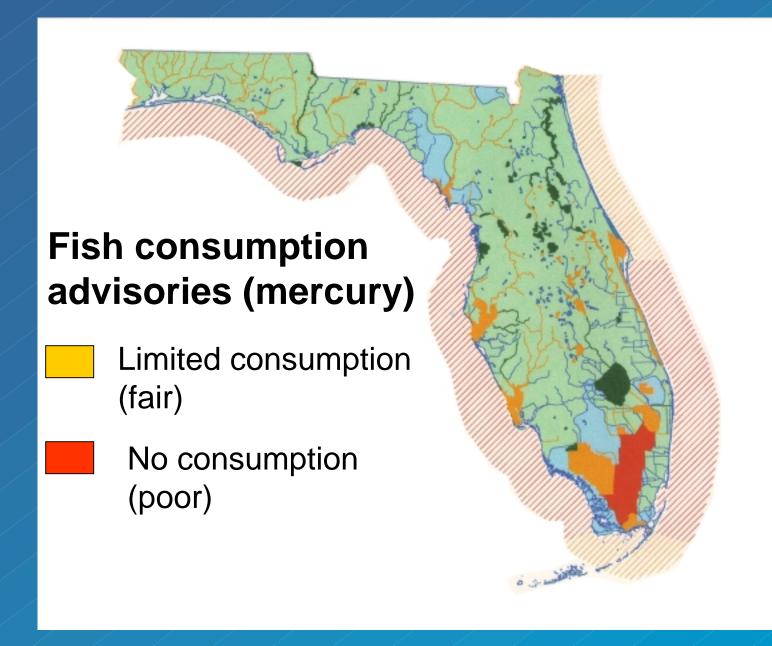
305(b) Methodology - database development

5. Inventory biological data

Statewide Biological database

- SCI Stream condition index
- uses 7 different indices based on types and numbers of macroinvertebrates present
 - if less than 20th percentile, then poor
 - if greater than 70th percentile, then good
- have other historical and new bioassessment data that needs to be integrated into assessment

Biological Index


METRIC Lookup	METRIC	REGION	SEASON	5	3	1
No. of Total Taxa	TOTAXA	Panhandle	Summer	>=31	30.0-16.0	<16
No. of EPT Taxa	EPTTAXA	Panhandle	Summer	>=7	6.0-4.0	<4
No. of Chironomidae Taxa	CHIRTAXA	Panhandle	Summer	>=9	8.0-5.0	<5
% Dominant Taxon	PERDOM	Panhandle	Summer	<=22	23-61	>61
% Diptera	PERDIP	Panhandle	Summer		<=50	>50
Florida Index	FLAIND	Panhandle	Summer	>=16	15-8	<8
% Filters	PERFIL	Panhandle	Summer	>=12	11.0-6.0	<6

meets partially does not meet

305(b) Methodology - database development

6. Inventory fish consumption advisory data Mercury Survey

- in 1989, FGFFC, FDHRS, and FDEP initiated a project to sample fish tissue for mercury concentration
- approximately one million acres of fresh water are "no consumption" areas (do not support their designated use)
- approximately one million acres of fresh water have "limited consumption" advisories (partially support their designated use)

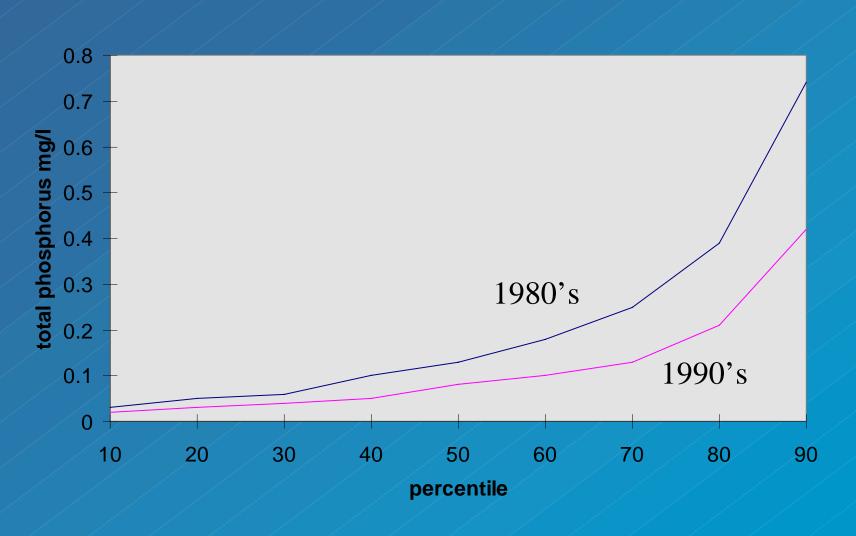
Fish Consumption Advisory

	Good	Fair	Poor
Mercury in fish	<0.5 mg/kg	0.5-1.5 mg/kg	>1.5 mg/kg
tissue		(limited	(no consumption)
		consumption)	
	meets	partially	does not
			meet

7. Calculate index

- a. Water Quality Index (WQI)
 - developed and used in 1988 305(b) report
 - a single numeric value condensed from several water quality parameters
 - applies to streams, black waters, and springs
 - annual median water quality values derived from STORET chemical data
 - includes five (5) categories of measurements:

- 7. Calculate index indices are primarily designed to address impacts from nutrients given narrative nutrient criteria
 - a. Water Quality Index (WQI)


Five Categories:

- Water Clarity
 - Turbidity and Total suspended solids
- Dissolved Oxygen
- Oxygen demanding substances
 - BOD, COD, and TOC
- Nutrients
 - Total N, Nitrate, and Total P
- Bacteria
 - Total Coliform and Fecal Coliform

7. Calculate index

- a. Water Quality Index (WQI)
 - each parameter assigned a value between 0 and 99 based on the percentile distribution of stream water quality (Typical Water Quality Values, from 1989)
 - values averaged to obtain an overall index value for each category
 - each category are averaged to obtain a final WQI rating (good = 0-44, fair = 45-59, or poor = 60-99)

Stream phosphorus percentiles for 1980 and 1990

Chemistry Index Water Quality Index Values

Parameter	t quality						\/V	orst_quality		
WQI	Unit	10	20	30	40	50	60	70	80	90
Category: Water clarit	ty/									
Turbidity	JTU	1.50	3.00	4.00	4.50	5.20	8.80	12.20	16.50	21.00
Total suspended solids	milligrams per liter (mg/l)	2.00	3.00	4.00	5.50	6.50	9.50	12.50	18.00	26.50
Category: Dissolved ox	ygen									
Dissolved oxygen	mg/l	8.00	7.30	6.70	6.30	5.80	5.30	4.80	4.00	3.10
Category: Oxygen dema	and /									
Biochemical oxygen demand	mg/l	0.80	1.00	1.10	1.30	1.50	1.90	2.30	3.30	5.10
Chemical oxygen demand	mg/l	16.00	24.00	32.00	38.00	46.00	58.00	72.00	102.00	146.00
Total organic carbon	mg/l	5.00	7.00	9.50	12.00	14.00	17.50	21.00	27.50	37.00
Category: Nutrients										
Total nitrogen	mg/l as N	0.55	0.75	0.90	1.00	1.20	1.40	1.60	2.00	2.70
Nitrate plus nitrite	mg/l as N	0.01	0.03	0.05	0.07	0.10	0.14	0.20	0.32	0.64
Total phosphorus	mg/l as P	0.02	0.03	0.05	0.07	0.09	0.16	0.24	0.46	0.89
Category: Bacteria										
Total coliform	#/100 milliliters (ml)	100.00	150.00	250.00	425.00	600.00	1100.00	1600.00	3700.00	7600.00
Fecal coliform	#/100 ml	10.00	20.00	35.00	55.00	75.00	135.00	190.00	470.00	960.00

meets partially does not meet

7. Calculate index

- b. Trophic State Index (TSI)
- applies to lakes and estuaries
- measures the potential for algal or aquatic weed growth - total nitrogen, total phosphorus, chlorophyll
- a ten (10) unit change in the index represents a halving or doubling of algal biomass
- overall TSI is an average of chlorophyll and nutrient indices

- 7. Calculate index
 - b. Trophic State Index (TSI)
 - Trophic State Index for lakes based on:
 - Chlorophyll Florida lake index value
 - developed from a regression analysis of data collected from 313 Florida lakes
 - Nutrients Nutrient Trophic State Index Value
 - based on phosphorus and nitrogen concentrations and the limiting nutrient concept

7. Calculate index

b. Trophic State Index (TSI)

Limiting Nutrient Concept

Identifies a lake as phosphorus limited if the nitrogen-to phosphorous concentration ratio is greater than 30, nitrogen limited if the ratio is less than 10, and balanced if the ratio is between 10 and 30.

- 7. Calculate index
 - b. Trophic State Index (TSI)
 - Trophic State Index for Estuaries
 - Rating scale is lower for each category
 - Reflects a lower desirable upper limit for chlorophyll

- 7. Calculate index
 - b. Trophic State Index (TSI)
 - Trophic State Index

Rating	Lake	Estuary
Good	0 - 59	0 - 49
Fair	60 - 69	50 - 59
Poor	70 - 100	60 - 100

Chemistry Index Lake Trophic State Index Values

	Tsi	0	10	20	30	40	50	60	70	80	90	100
Ī	Chlorophyll	.3	.6	1.3	2.5	5	10	20	40	80	160	320
/	ug/I Total	.003	.005	.009	.01	.02	.04	.07	.12	.2	.34	.58
	phosphorus mgP/I											
	Total nitrogen mg N/I	.06	.10	.16	.27	.45	.7	1.2	2.0	3.4	5.6	9.3
 	ilig, v/1											
		meets						artiall	У	does 1	not me	eet

8. Identify exceedances of water quality criteria

- Florida's surface water quality criteria are used to assess whether a pollutant concentration in a watershed is high enough to preclude the designated use of the waterbody
- exceedances of metal's and conventional pollutants are determined using chemical water quality data from STORET
- based on the number of violations in last 3 years

8. Identify exceedances of water-quality standards

- parameters evaluated:
 - Conventional pollutants
 - Dissolved oxygen
 - Chlorides
 - Ammonium

- Total/fecal Coliform
- Fluoride

- Metals
 - Arsenic
 - Aluminum
 - Cadmium

- Chromium
- Iron
- Lead
- Mercury
- Nickel Thallium
 - 0-1--
 - Selenium
- Zinc

Silver

Determining water quality

(based on exceeded standards over a three-year period)

	Good	Fair	Poor
Conventional pollutants	< 10%	11 - 25 %	> 25%
Metals, unionized ammonia, chloride, cyanide, pesticides	<=1 sample	10%	> 10%
Bacteria	0	□ 10%	> 10%

305(b) Methodology - conclusions

9. Status determination

- a single, simple averaging, over-all water quality rating for a watershed
- each assessment value is given a score
 - Good quality 1
 - Fair quality 3
 - Poor quality 5
- Score chemistry, biology and fish consumption

305(b) Methodology - conclusions

9. Status determination

- overall average is calculated
 - Good 1 to 2
 - Fair 2 to 4
 - Poor 4 to 5
- result is a status rating representing the present status for each watershed with sufficient data for assessment
- does not address data sufficiency, simply assesses whatever data are present
- not used for Use determination, which is basis for 303(d) list

305(b) Methodology - conclusions

10. Apply confidence filters

- A minimum of three "samples" (a sample is defined as two sampling events: one summer and one winter) is required for each watershed instead of only one sample. (Note the 3 samples could be taken in 1 year from 3 different stations or from 1 station sampled over 3 years.)
- Data from three or more Water Quality Index (WQI) categories (water clarity, DO, oxygen demanding substances, nutrients, and bacteria) are required to determine a WQI.
- For the oxygen demanding substances category of the WQI,
 if BOD data are available, COD and/or TOC will not be used.

305(b) Methodology - conclusions

11. Use designation determination

- results reported as
 - Meets Designated Use
 - Partially Meets Designated Use
 - Does Not Meet Designated Use
- result is a rating representing the present use designation for each watershed with sufficient data for assessment
- Note EPA requires if biology and chemistry indicate poor quality, then the index is set to does not meet.

305(b) Methodology - conclusions

11. Use designation determination

Assessment Components

Chemistry Index
Stream WQI or Lake/estuary TSI

Chemistry Violations

conventionals metals

Biology Index Fish Contamination

The Assessment Calculation for Chemistry **Passing Confidence Filter**

- Chemistry Index
 - Stream WQI
 - Lake/estuary TSI

- good
- calculated Good - 1 to 2 Fair - 2 to 4 Poor - 4 to 5

overall average is

- Chemistry Violations
 - conventionals fair 3
 - good 1 metals
- Biology Index good 1
- Fish Contamination fair 3

Status = (1 + (3 + 1)/2 + 1 + 3)/4 = 7/4 = 1.75 = good305(b) Use designation = Meets

The Assessment Calculation for Chemistry Not **Passing Confidence Filter**

Chemistry Index*

Stream WQI

Lake/estuary TSI

good

overall average is calculated Good - 1 to 2 Fair - 2 to 4 Poor - 4 to 5

Chemistry Violations

conventionals fair 3

— metals good

 Biology Index poor

 Fish Contamination 3 fair

> 305(b) Use designation = Does not Meet Use (because Biology is poor)

^{*} Not used because not enough samples were collected to pass confidence filter.

The Assessment Calculation

Chemistry Index

Stream WQI

Lake/estuary TSI

overall average is calculated

good 1

Good - 1 to 2 Fair - 2 to 4

Poor - 4 to 5

Chemistry Violations

conventionals

fair 3

— metals

good 1

Biology Index

good 1

• Fish Contamination fair 3

Overall call = (1 + (3+1/2) + 1 + 3)/4 = 7/4 = 1.75 = good 305(b) Use designation = Meets

305(b) Methodology - conclusions

12. Other EPA reporting requirements - Screen for poor water quality (causes)

- used to identify poor water quality
- compare water quality value to index criteria
 - used in eBASE to color code individual water quality measurements

305(b) Methodology - source determination

12. Other EPA reporting requirements - nonpoint source pollution data (sources)

1994 update of 1988 Survey

- in 1988, FDEP qualitatively assessed the effect of nonpoint pollution on Florida's waters via a questionnaire sent to all major state agencies
- received 300-400 respondents from 150 agencies
- identified: nonpoint sources of pollution
- pollutants, symptoms (fish kills & algal blooms)
- updated survey in 1994
- 1998 305(b) used the pollution source information to identify sources (e.g. agriculture or urban runoff)

305(b) Methodology - trend analysis

13. Other EPA reporting requirements - analyze trends

- trends determined by utilizing:
 - water quality measurements for individual parameters and
 - overall Stream Water Quality Index (streams, black water streams and springs) or
 - overall Trophic State Index (lakes and estuaries) for watersheds.
- determined for watersheds with at least 5 years of data between 1988 and 1997; total of 945 statewide

305(b) Methodology - trend analysis

13. Other EPA reporting requirements - analyze trends

- uses Spearman Ranked Correlation Coefficient
- determined by comparing improved and degraded water quality measurements
- annual median values for sampling stations are analyzed for changes
- if a waterbody shows no trend, or if just one indicator shows a trend, then the trend is classified as "no change"

305(b) Methodology - acknowledged weaknesses

- TSI for Estuaries based on Lakes
 - need estuarine-specific index
 - doesn't differentiate between different types of estuaries
- Lake TSI not regionally based and doesn't address nuisance aquatic vegetation
- WQI for streams not regionally based and criteria for good, fair, and poor (particularly fair) are questionable

305(b) Methodology - acknowledged weaknesses

(continued)

- Need to incorporate historical bioassessment data and data from BioRecons
- Uses mean Dissolved Oxygen (DO) values
 - doesn't adequately address low DO at depth
 - high DO from algal blooms skew data
 - could use percent DO saturation
- Doesn't address some designated uses
 - shellfish and beach closing

305(b) Methodology -Other Key Issues

- Confidence in assessment
 - frequency and number of samples
- Should we composite metrics or have independent applicability
- How to address natural perturbations and variability